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Inverse bremsstrahlung absorption in large radiation fields 
during binary collisions-classical theory 

G J PERT 
Department of Applied Physics, University of Hull, Hull, UK 

MS received 28 June 1971. in revwed form 16 November 1971 

Abstract. A simple method of calculating the inverse bremsstrahlung absorption coefticient 
in binary collisions is presented. The approach allows calculations to be made of the absorp- 
tion at any field strength provided the field is classical and the electron is nonrelatiyistic 
and its thermal distribution function is isotropic Calculations are made for electron/ 
atom collisions interacting by a power low central force. The results are extended to discush 
absorption in plasmas. The effects of electron-electron and inelastic collisions are also 
considered. 

1. Introduction 

The absorption of electromagnetic radiation by electrons during a collision is a well 
known phenomenon. The problem has been investigated by two different methods. 
The kinetic approach considers the behaviour of the electrons in a gas under the influence 
of an electromagnetic field (MacDonald 1966). The electron distribution function is 
calculated from the Boltzmann equation via an expansion in tzrms of u / r ,  where I I  is 
the oscillation velocity, and cT the thermal speed. Thc second approach calculates the 
absorption coefficient directly from the bremsstrahlung emission cross sections of the 
electrons (Bekefi 1966). Since bremsstrahlung is a single photon process this method is 
only valid if mu; << ho, that is, the classical absorption energy/collision is less than the 
photon energy. It is easily shown that if the electron thermal energy is very much 
greater than ho, so that the quantum nature of the absorption may be neglected, both 
approaches lead to the same equation for the distribution function (Zel’dovich and 
Raizer 1965) 

where (dffldt), takes into account energy losses in elastic and inelastic collisions and 
x = $ v e f f E O .  The quantity veff is the elastic collision frequency and 6, the oscillation 
energy of the electron in the field of peak intensity E,. Equation (1) is valid up to third 
order in u/vT. 

If the field is very strong U/C, may not be small and the results obtained from the 
small field perturbation theory may be in error. The effects of multiphoton brems- 
strahlung have been considered by Rand (1964) and by Bunkin and Federov (1966): 
the results are not however in a very convenient form for manipulation. Hora (1970) 
has indicated classically that departures from the classical absorption formula for an 
ionized gas (Spitzer 1956) may be expected when rT 5 U. 
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In this paper a simple classical nonrelativistic method is indicated which enables the 
absorption of a group of electrons of constant thermal speed to be calculated. The 
method is limited in its applicability by the assumption of isotropy of the distribution 
function with respect to the thermal (time averaged) speed. As is well known the 
condition is obeyed to second order for u/uT << 1 ; similarly by averaging over collisions 
it can also be shown to be valid to second order for vT/u << 1. 

This technique is thus limited to first order for the high and low field cases. To 
higher order a more refined technique must be used. However the results are obtained 
in an easily used form. If it can be shown that the distribution function is isotropic 
despite the field, the results will be valid over the whole range of v,/u; for example 
in a fully ionized plasma absorption only occurs in heavy particle-electron collisions 
(in the dipole approximation), the electron collisions simply introducing a randomization 
of the electron velocity vector. In this case the distribution function will be isotropic 
and the exact results obtained for the absorption may be integrated over the electron 
distribution, which will approximate to a maxwellian to obtain the total absorption 
coefficient of the plasma. 

In addition to the limits imposed by the distribution function, the electron is 
considered to move classically and nonrelativistically in a uniform, monochromatic 
wave field such that the oscillation frequency o satisfies 

1 
- >> 0 >> V,ff 
z 

where z is the duration of the collision. The classical approximation implies muc >> Ao, 
but the classical field approximation can be written +mu2 >> ho and is therefore a more 
restrictive condition, since the electrons are assumed nonrelativistic. 

2. Thermal energy increase in heavy particle elastic collisions 

In an oscillating electromagnetic field it is well known that electrons oscillate a quarter 
period out of phase with the field: thus the electron velocity due to the field is 

( 2 )  U = uo sin wt 

where 

and e and m are the electron charge and mass respectively and o the angular frequency 
of the field. In addition to this velocity the electron will also have its thermal velocity 
vT, giving a total velocity 

v = v,+u. (3) 

+mu2 = *mu2 ++mu+ + mu . vT . (4) 

The total electron energy is thus 

It can be shown that averaging over all electron velocity directions 
- 
U . V T  = 0 

to second order for either (vT/u << 1) or (vT/u >> 1) provided o >> veff,  the collision 
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frequency. Physically this result is due to the loss of memory of the previous collision 
due to the oscillations between collisions, that is, the next collision occurs at a random 
part of the oscillation independent of the previous collision. Under these conditions 
the electron energy may be clearly divided into two parts, one the energy of oscillation 
*mu2 the other the random thermal energy +mu+. 

The problem is to calculate the rate of thermal energy gain by electrons in the field. 
This may be done by calculating the thermal energy gain in a collision with given U 
and U,; and then averaging over electrons, that is over U and uT. The energy gain per 
collision is easily calculated once the nature of the collision is understood. Before the 
collision at a time t the electron has velocity 

(6) U = UT + U(t). 

U’ = U;. +U(t’). 

After collision the velocity will be changed to 

The collision has thus changed the thermal velocity from vT to v i .  If the collision 
takes a time very much less than l/w, then the velocity U at which the collision occurs 
is clearly defined (it should be noted that even in optical fields this condition will usually 
be obeyed). 

The gain in thermal energy due to an electron/atom collision is thus 

( 7 )  

provided the collision is elastic, and there is no energy transfer to the heavy particle, 
since the ratio of masses of the electron and heavy particle is very small. We therefore 
consider an assembly of electrons with differing thermal velocities, but all oscillating 
with the field. The electrons collide from time to time with the heavy particles, which 
may be regarded as stationary targets. During the collisions the electrons are heated, 
the energy so converted being identified as radiation absorbed. 

In the time interval 6t the number of collisions of electrons with velocity (U + uT) 
resulting in scattering through an angle 6 into solid angle dR/unit volume, is given by 

1 Tmv;” -$mu+ = ww . (uT - U;) 

I(e)nUf(vT) 6t dR dUT (8) 

where I ( 0 )  is the differential elastic collision cross section, n the density of heavy particles 
and f(uT) the electron distribution function. 

The total energy gain by electrons with thermal speed uT and oscillation velocity U 
in &/unit volume is 

This quantity must be integrated over the scattering solid angle and then averaged 
over all directions of uT (since the direction of uT is random, as discussed earlier) and 
values of U. 

Defining the scattering angles (6, d,) with respect to incoming velocity U and the 
plane of U and U 

goy -V:) = U .  (U-U’) 

= U . v( 1 - cos 6) - /U] JvI sin 6 cos d, sin 6’ 

where 8’ is the angle between U and U. Integrating over 6’ and 4, the energy gain/electron 
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for electrons of velocity uT and U in time 6t is given by 

mno I z(e)(i -cos e)u . u dR 6t = mnuu . uad at (11) 

where ad is the momentum transfer cross section and is in general a function of U .  

electron of speed vT in time 6t as 
We next average over all angles x between U and uT to give the average energy gain/ 

mn(u . uua,) 6t. (12) 

3. ‘Power law of force’ collisions 

This average cannot be performed unless the dependence of a d  on U is known. Fortu- 
nately for many important cases this is given by a simple power law 

ad = y y - 4 / ( s -  1) (13) 

where s is the power of the central field force causing the scattering. Using this relation 
the average can be performed for values of s. 

3.1. Hard sphere 

I fs  = CO the collision cross section is a constant and equation (12) yields for the energy 
gain in &/electron 

These results are exact, to the order of isotropy of the electron distribution. 

3.2. Maxwellian particles 

Ifs = 5 the collision frequency v is a constant. It should be noted that this is an important 
practical case corresponding to classical polarizable molecules. The energy gain in 
unit time is 

mn(adv)u2 = m2v. (14) 

3.3. Coulomb force law 

I fs  = 2 the momentum transfer cross section is given by 

b d  = In A (17) 
where A is a function of U (equations (27) and (29)). Neglecting the slow variation of the 
log term in the integration yields for the energy gain in unit time 

0 UT > U (18) 

UT < U .  
In b 

mny - 
14 
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3.4. Asymptotic solutions for general values qf's 

In addition to the results above which are exact, asymptotic solutions for general 
values of s( > 2) can also be simply calculated. For the energy gain in unit time we have 

>> U (20) 

mnylul" + 0) + , . . CT << 11 (21 1 

where /? = 1 -4 j (s-  1). 
It is easily shown that the result for uT >> U is also obtained by integrating ( 1 ) .  
These results may now be averaged over the oscillation of the electron to give the 

average energy gain of an electron of thermal speed uT/unit time. 
(i) For hard sphere molecules the energy gainiunit time is given by 

+mnuiodcT = +muiv,,, >> U ( )  

CT << U ( ) .  
4 

-mnu;od 
3n 

(ii) For maxwellian molecules the energy gainjunit time is given by 

+mu;v. 

(iii) For the Coulomb force law the energy gainjunit time is given by 

- mn CT < U 0  
7c 

CT << uo .  

The value of A is obtained by noting that the major contribution for the average comes 
from U 2 cT:  the contribution to the integral in (25) for U < cT being given by (18) and 
that for U > cT by (19). 

For sT > uo the average energy gain cannot be calculated in this simple manner. 
neglecting the behaviour of the In term. A must be written explicitly in terms of I' and 
the In term expanded in terms of the small order term in u / q .  which yields the average 
energy gain. 

Coulomb force laws are found in practice in two important cases: high velocity 
atomic scattering (Born approximation) and ionic scattering. For the former 

(271 

where y is a constant characteristic of the atom. From equation (26) the photon absorp- 
tion cross section in high fields is thus 

which is in good agreement with results obtained directly from a quantum mechanical 
calculation (compare Rand (1964) for 1 = n/2 and Bunkin and Federov (1966) which 
contains a numerical error). 
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4. Absorption in a plasma 

Although the principal collision mechanism resulting in bremsstrahlung absorption 
in a plasma is electron-ion collisions, these calculations cannot be directly applied to 
this case due to the long range nature of the force and electron correlations (Dawson and 
Oberman 1962). We may however still obtain qualitatively correct results in the case 
o >> wp the plasma frequency, which are in error only by a slowly varying log factor 
of the order of 1 by the frequently used technique of a cut-off (Oster 1961) when the col- 
lisions are predominately binary. In very low frequency fields it is usually assumed 
that the upper cut-off can be taken at the Debye length d due to the shielding of the ion 
charge. However the requirement that the duration of the collision be small compared 
to the period of the field introduces a more stringent cut-off. Thus particles with impact 
parameter b' 2 vT/w must be excluded. Since d = vT/wp and up << o ; b' = v T / o  < d, 
and therefore b' rather than d must be used as the upper cut-off (Heald and Wharton 
1965). 

The field is also effectively cut-off on the short range side by the condition for the 
90" scattering, namely the Landau parameter b*. The result of these cut-offs is to intro- 
duce the log term 

into the momentum transfer cross section (Sutton and Sherman 1965, p 143). In a 
large radiation field the simple theory leading to the cut-off equation (29) no longer holds. 
The cut-offs in this case depend on whether the behaviour of the electrons is dominated 
by thermal or field effects. The characteristic parameter determining these effects will 
be the length 

kT I = -  
eE 

over which thermal effects dominate over those due to the field. Thus at 'not too high' 
fields the previous theory will hold out to a distance 1 and the cut-offs are b* and the 
smaller of 1 and b'. However at high fields 1 < b* and this model clearly no longer holds. 
In this case the minimum cut-off is clearly 1 and the maximum is determined by the 
maximum distance over which the field induced oscillation causes a collision, namely the 
amplitude of the oscillation 

Thus the cut-offs are 

b':b* b' < 1 

l:b* 

L : l  b* > 1. 

b* < 1 < b' 

For very fast particles the lower cut-off is determined by the electron wavelength 
A( =h/mv) where il > b* or I ,  whichever is appropriate (Bekefi 1966). 

At low fields the term not involving the log is zero (equation (18)). Since the log term 
is determined solely by the cut-off terms (equation (29)) it cannot be expected that a 
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calculation of the absorption coefficient obtained as a result of the variation of the log 
term with the oscillation will yield accurate results when the effects treated by the cut- 
offs are so crudely represented. Such is indeed the case but the absorption coefficient 
calculated in this manner is in error by a factor of only 0.23 that obtained by more 
accurate methods (Scheuer 1960, Dawson and Oberman 1962) 

However at high fields the absorption is not due to the log term, which is in fact 
averaged, and in consequence the results may be expected to be more accurate. 

At high fields the absorption Coefficient? is 

where 

- 1 kT/eEo (kT)’ A = - = -  - 
b* Z e 2 / k T -  = 1 > b* 

L e E o / m o 2  
I k T / e E ,  m o 2 k T  

1 < b*. - -- - -  _ - -  

(34) 

( 3 5 )  

It must be appreciated that this calculation is likely to be only approximate in the 
In Zi term due to the qualitative treatment of the electron collective effects. 

5. Thermal energy increase in electron-electron collisions 

In this case we consider the case of two oscillating electrons; with initial velocities at 
collision u1 +U and u,+u. After the collision their velocities are U’, +U and v;+u .  
Since the collision is elastic 

(36 )  +m(v: + u2)  + +m(ut + u2)  = +m( U;’ + U’) t +m(ui2 + U:) 
and momentum is conserved 

m(v,  + v 2 )  = m(u; +U;). 

$n(u;2+t.;2-u:-uU:) = ~ u . ( u ; + u ; - u , - u , )  = 0. 

(371 

The change in thermal energy is 

( 3 8 )  

There is thus no energy increase following an electron-electron collision, as may be 
expected since a system electron-electron has no dipole moment. 

6. Thermal energy gain in inelastic collisions 

In addition to the elastic collisions with the heavy particles, the electrons will also make 
inelastic collisions resulting in an energy transfer E,  to the nth excited state of the particle. 
In this case the thermal energy gain per second in collisions with the electron velocity 
U and uT is 

t A calculation of this term has also been reported by Babuei-Peyrissac (1970) using the Dawson-Oberman 
procedure, which also shows the difference between the regions I < h* and 1 b*. 
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where 8 is the scattering angle. I,(@ is the differential cross section for excitation of the 
nth state and U' the final velocity is given by 

Further progress can only be made analytically in the case where the electron velocity 
U >> (2E,,")''2. In this case the integral over 8 can be performed and the result summed 
over all states of the particle to yield the total thermal energy gain per second by an 
electron of velocity U ,  uT 

where K is the retardation (Landau and Lifshitz 1958) and fsin,d is the total inelastic 
diffusion cross section. 

If the velocity is sufficiently fast the cross sections may be calculated by the Born 
approximation to yield 

fsin,d = y ' v 4  In A' 

K = In 6 

where A' and 6 are dependent on the velocity. 

by an electron of speed U and thermal velocity uT 
Performing the integrals as before we obtain for the average thermal gain per second 

mny' In A'- 3nB In F 
14 

UT < U. (44) 

For vT > U an average value has been taken for 1nA' leading to the zero, as in elastic 
collisions (equation (18)): more correctly the variation of the log term should be taken 
into account. In this case since A' N v we obtain for vT >> U, the average thermal energy 
gain per second per electron as 

and for U >> uT, the average thermal energy gain per second per electron as 

7. Elastic energy losses 

In a collision with a stationary gas molecule the total electron energy is not left unchanged 
but is decreased by a factor (2mlM) (1 -cos 0) where M is the mass of the molecule. This 
factor can be taken into account in a similar manner to that used to investigate inelastic 
1 os s e s. 
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The electron thermal energy gain per second for electrons of velocity U and oscillation 
U is 

mnv u . u - - c 2  od a 
since mIM c 1. 

8. Discussion 

These results for the elastic scattering confirm the l/Ei dependence of the absorption 
coefficient found previously. It can be clearly seen that this dependence results from 
the characteristic l /v4 dependence of the cross section given by the Born approximation 
at large velocities. The 1/E, dependence found by Hughes and Nicholson-Florence 
(1968) can be seen to be due to the time average of the instantaneous power absorption 
being performed using the radiation field instead of the electron velocity; when this is 
modified the dependence is again found to be l/Ei. 

A similar problem has also been considered by Afanas’ev et a1 (1970) for atomic 
collisions. In this work the distribution function is calculated from equation (1) taking 
into account energy losses due to inelastic collisions, the energy gain in inelastic collisions 
which will be of the same order as that in elastic collisions being neglected. Since at 
high electron energy ( Y 100 eV) inelastic collisions in fact become more probable than 
elastic, the neglect of this term may cause significant error when 

where I is the ionization energy. Under these conditions the electron has sufficient 
energy to ionize the atom in nearly each collision. These collisions may be included 
using equation (46) provided the distribution function is known and is isotropic. 

In the calculation of the absorption in atomic collisions it has assumed that the 
collision cross section of the electron on the atom is known. Clearly since this term 
depends on the structure of the atom involved in the collision the cross section itself 
may be modified by the field. At low fields the atom will be only slightly perturbed and 
the cross section for collisions will be approximately that for zero field. In high fields 
the electron velocities are high and the cross section is given by the Born approximation. 
As the elastic cross section (equation (27)) contains the atomic structure only through 
the term y which appears in the logarithm, it can be seen that little error will be incurred 
in using the zero field cross section. In the case of inelastic collisions, however, involving 
transitions to highly perturbed excited states, it is not obvious that the zero field cross 
section can be used. This point will be discussed in a subsequent paper and it will be 
shown that provided the sum is taken over all states of the atom (excluding the ground 
state but including the continuum) the total inelastic cross section is that calculated in 
zero field. 

I t  will be appreciated that the collision frequency for electron-electron collisions 
will be determined by the thermal velocity v,, whereas that of electron-heavy particles 
will correspond to the total velocity U = ++U. Thus in very high fields where the 
oscillation velocity is high the electron-heavy particle collision frequency will be de- 
creased by the inverse fourth power dependence of the cross section on velocity. As a 
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result it must be expected that those transport coefficients which depend on the electron- 
heavy particle collision frequency (electron-heavy particle relaxation, electrical and 
thermal conduction, diffusion etc) will be greatly modified by the field. On the other 
hand effects resulting solely from electron4ectron collisions (electron-electron relaxa- 
tion etc) will not be changed. As a result it may be expected that the electron distribu- 
tion function in an ionized gas will be maxwellian despite any anisotropy introduced 
by the bremsstrahlung. 
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